
GoMining
smart contracts
preliminary audit report
for internal use only

August 2023

hashex.org

contact@hashex.org

Contents

Page 2 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

1. Disclaimer 3

2. Overview 4

3. Found issues 6

4. Contracts 8

5. Conclusion 15

Appendix A. Issues’ severity classification 16

Appendix B. List of examined issue types 17

Appendix C. Issue status description 18

1. Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry

practice at the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework

and algorithms based on smart contracts, the details of which are set out in this report. In order to get a

full view of our analysis, it is crucial for you to read the full report. While we have done our best in

conducting our analysis and producing this report, it is important to note that you should not rely on

this report and cannot claim against us on the basis of what it says or doesn’t say, or how we produced

it, and it is important for you to conduct your own independent investigations before making any

decisions. We go into more detail on this in the disclaimer below – please make sure to read it in full.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you do not agree to

the terms, then please immediately cease reading this report, and delete and destroy any and all

copies of this report downloaded and/or printed by you. This report is provided for information

purposes only and on a non-reliance basis and does not constitute investment advice. No one shall

have any right to rely on the report or its contents, and HashEx and its affiliates (including holding

companies, shareholders, subsidiaries, employees, directors, officers, and other representatives)

(HashEx) owe no duty of care towards you or any other person, nor does HashEx make any warranty or

representation to any person on the accuracy or completeness of the report. The report is provided "as

is", without any conditions, warranties, or other terms of any kind except as set out in this disclaimer,

and HashEx hereby excludes all representations, warranties, conditions, and other terms (including,

without limitation, the warranties implied by law of satisfactory quality, fitness for purpose and the use

of reasonable care and skill) which, but for this clause, might have effect in relation to the report. Except

and only to the extent that it is prohibited by law, HashEx hereby excludes all liability and responsibility,

and neither you nor any other person shall have any claim against HashEx, for any amount or kind of

loss or damage that may result to you or any other person (including without limitation, any direct,

indirect, special, punitive, consequential or pure economic loss or damages, or any loss of income,

profits, goodwill, data, contracts, use of money, or business interruption, and whether in delict, tort

(including without limitation negligence), contract, breach of statutory duty, misrepresentation

(whether innocent or negligent) or otherwise under any claim of any nature whatsoever in any

jurisdiction) in any way arising from or connected with this report and the use, inability to use or the

results of the use of this report, and any reliance on this report. The analysis of the security is purely

based on the smart contracts alone. No applications or operations were reviewed for security. No

product code has been reviewed. HashEx owns all copyright rights to the text, images, photographs,

and other content provided in the following document. When using or sharing partly or in full, third

parties must provide a direct link to the original document mentioning the author (hashex.org).

Page 3 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

https://hashex.org

2. Overview

HashEx was commissioned by the GoMining team to perform an audit of their smart contract.

The audit was conducted between 22/08/2023 and 28/08/2023.

The purpose of this audit was to achieve the following:

Identify potential security issues with smart contracts

Formally check the logic behind given smart contracts.

Information in this report should be used for understanding the risk exposure of

smart contracts, and as a guide to improving the security posture of smart contracts by

remediating the issues that were identified.

The code is available at gomining2/gmt-contracts/minter-burner Gitlab repository and was

audited after the commit 2c20ef9.

2.1 Summary

Project name GoMining

URL http://gomining.com

Platform Ethereum

Language Solidity

2.2 Contracts

Name Address

GoMiningToken

Page 4 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

https://gitlab.com/gomining2/gmt-contracts/minter-burner
https://gitlab.com/gomining2/gmt-contracts/minter-burner/-/tree/2c20ef963a5134ac331c0b3bd040e788d2315e6a
http://gomining.com

MinterBurnerMinterBurner

MintReward

VEGoMiningToken

Page 5 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

3. Found issues

13
Total issues

High 1 (8%)

Medium 2 (15%)

Low 5 (38%)

Info 5 (39%)

C2. MinterBurner

ID Severity Title Status

C2-01 High Burn Ratio validation Open

C2-02 Medium Ownership validation Open

C2-03 Low Lack of events Open

C2-04 Low Gas optimization Open

C2-05 Info Explicitly unused mappings Open

C2-06 Info Incomplete NatSpec documentation Open

C3. MintReward

Page 6 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

ID Severity Title Status

C3-01 Medium Update of veToken address can break

reward calculations

Open

C3-02 Low Gas optimization Open

C3-03 Info Creating empty reward distribution Open

C4. VEGoMiningToken

ID Severity Title Status

C4-01 Low Gas optimization Open

C4-02 Low Incorrect validation Open

C4-03 Info Fork artifacts Open

C4-04 Info Not implemented function Open

Page 7 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

4. Contracts

C1. GoMiningToken

Overview

This contract defines an ERC-20 token implementation. It has mint and burn functionality

allowed to the owner.

Also, the contract owner can pause all operations with the contract at any time.

C2. MinterBurner

Overview

The contract manages the process of burning existing tokens and minting new tokens as

rewards. It includes functionalities to add and remove mint receivers who can receive a portion

of minted tokens as rewards.

The contract has a mechanism to define and manage different epochs of burn ratios, which

determine the ratio of tokens to be burned for minting rewards

Issues

OpenHighC2-01 Burn Ratio validation

The addBurnRatioEpoch() function allows the creation of new burn epochs with specific

volume and ratio. However, the function parameters are not validated. This can lead to wrong

calculations in the getAmountToMint() function.

 function addBurnRatioEpoch(

 uint256 volume,

 uint16 deciRatio

Page 8 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

) external onlyRole(CONFIGURATOR_ROLE) {

 burnRatioEpochs.push(BurnRatioEpoch(volume, deciRatio));

 }

The same issue in the setLastBurnRatio() function.

Recommendation

We highly recommend adding validation for the volume (non-zero) and ratio parameters.

OpenMediumC2-02 Ownership validation

We highly recommend adding non-zero address validation for the newOwner parameter of the

transferTokenOwnership() function to prevent losing the ownership.

OpenLowC2-03 Lack of events

We recommended emitting events on important value changes to be easily tracked off-chain.

No event are emitted in the setMintRewardDeciPercent(), addMintReceiver(),

removeMintReceiver(), setLastBurnRatio(), clearBurnRatioEpochs() functions.

OpenLowC2-04 Gas optimization

a. The variable ts (L18) of the BurnAndMint and ReceiverBurnAndMint structures is never read

in the contract code. Consider removing it or packing it with the blk variable by casting types

to uint128.

b. The pause(), unpause(), getMintReceivers(), getBurnRatioEpochs() functions can be

declared as external.

c. We recommend defining a local variable for loop length (L109, L174) to prevent multiple

storage readings in each loop step. For example:

Page 9 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

const len = burnRatioEpochs.length;

for (uint256 i = 0; i < len; i++) {

 burntSummary += burnRatioEpochs[i].volume;

 if (burntAmount < burntSummary) {

 return (i, burntSummary - burntAmount);

 }

}

d. The require checks of the transferTokenOwnership(), mintTokens(), burnTokens() are

redundant and can be removed, because they already exist in the GoMiningToken

functionality.

require(IGoMiningToken(Token).owner() == address(this), "MinterBurner: not an owner");

OpenInfoC2-05 Explicitly unused mappings

When the burnAndMint() function is executed, the mappings burnAndMintHistory,

receiverBurnAndMintHistory, receiverBurnAndMintIndex are updated.

At the same time, these mappings are not explicitly used or read anywhere.

Make sure you need to use them.

OpenInfoC2-06 Incomplete NatSpec documentation

The updateMintReward() function of the contract does not have documentation. We

recommend writing documentation using NatSpec Format. This would help in development,

as well as simplify user interaction with the contract (including using the block explorer).

Page 10 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

https://docs.soliditylang.org/en/latest/natspec-format.html

C3. MintReward

Overview

The contract handles the distribution of rewards to users based on a certain user's balance

of VEGoMiningToken.

All rewards are provided by the MinterBurner contract.

Issues

OpenMediumC3-01 Update of veToken address can break reward
calculations

The contract has a function for updating veToken address.

 function updateVeToken(address _veToken) external onlyRole(CONFIGURATOR_ROLE) {

 require(_veToken != address(0), "MintReward: veToken is zero address");

 veToken = _veToken; //@audit can break all reward calculations

 }

As rewards are calculated via account balances of veToken on a certain block, updating it may

lead to disruptions in reward calculation.

 function unclaimedRewards(address _addr) public view returns (uint256) {

 ...

 uint256 amount;

 for (uint256 i = lastRewardIndex + 1; i < rewardCount; i++) {

 Reward memory reward = rewards[i];

 if (IVEGoMiningToken(veToken).totalSupplyAt(reward.blk) != 0) {

 amount += IVEGoMiningToken(veToken).balanceOfAt(_addr, reward.blk) *

reward.amount / IVEGoMiningToken(veToken).totalSupplyAt(reward.blk);

 }

 }

Page 11 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

 return amount;

 }

Recommendation

Remove the function to avoid accidentally updating to the wrong token or ensure that the new

veToken has the same historical balances as the old one.

OpenLowC3-02 Gas optimization

a. The variable ts (L18) of the Reward structure is never read in the contract code. Consider

removing it or packing with the blk variable by casting types to uint128.

b. We recommend defining state variables Token and veToken (L21-L22) with IGoMiningToken

and IVEGoMiningToken types respectively. It will allow you not to change type every time on

L79, L123, L104, L105 and will save gas on every external call to such addresses.

c. No need to use timestamp and block number (L40-41) in the ReceivedReward event. Such

metadata already exists in each event and can be easily fetched.

d. Consider using a local variable instead of multiple storage readings of the veToken state

variable in the for-loop of the unclaimedRewards() function.

OpenInfoC3-03 Creating empty reward distribution

The receiveReward() function allows to create new reward distribution. But during claiming

rewards, the totalSupplyAt() of vesting tokens is checked (L104). And if the total supply is

equal to zero, then such rewards will not be paid to anyone and will simply remain in the

contract.Basically, this issue is mitigated by the owner's ability to burn tokens. But we also

recommend adding a totalSupplyAt() != 0 check to the receiveReward() function.

Page 12 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

C4. VEGoMiningToken

Overview

The contract is designed to provide a mechanism for users to lock their tokens for a specified

period, thus gaining claiming power in the MintReward contract or gaining voting power in a

decentralized governance system. It utilizes epoch-based history and slope calculations to

determine users' voting power dynamically based on their token locking behaviors.

This is a Solidity implementation of the CURVE's voting escrow.

Issues

OpenLowC4-01 Gas optimization

The pause() and unpause() functions can be declared as external.

OpenLowC4-02 Incorrect validation

The validation on L131 does not match the error message.

require(_decimals <= 255, "ve: decimals exceed 18");

OpenInfoC4-03 Fork artifacts

The contract contains artifacts from the original contract:

1. L19 - remove TODO comment;

2. L110 - L111 - unused comments;

3. L312, L316 - unused commented code;

Page 13 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

4. L381, L411 - unused TODO comment;

5. L501 - incorrect 'dev' explanation;

OpenInfoC4-04 Not implemented function

The function totalSupply(uint timestamp) is implemented in the original Vyper code, but the

Solidity contract lacks it.

Page 14 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

5. Conclusion

1 high, 2 medium, 5 low severity issues were found during the audit. No issues were resolved

in the update.

The reviewed contracts designed to be upgradeable are highly dependent on the owner’s

account. Users using the project have to trust the owner and that the owner's account is

properly secured.

This audit includes recommendations on code improvement and the prevention of potential

attacks.

We recommend covering the found issues with tests after they are fixed.

Page 15 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

Appendix A. Issues’ severity classification

Critical. Issues that may cause an unlimited loss of funds or entirely break the contract

workflow. Malicious code (including malicious modification of libraries) is also treated as a

critical severity issue. These issues must be fixed before deployments or fixed in already

running projects as soon as possible.

High. Issues that may lead to a limited loss of funds, break interaction with users, or other

contracts under specific conditions. Also, issues in a smart contract, that allow a privileged

account the ability to steal or block other users' funds.

Medium. Issues that do not lead to a loss of funds directly, but break the contract logic.

May lead to failures in contracts operation.

Low. Issues that are of a non-optimal code character, for instance, gas optimization tips,

unused variables, errors in messages.

Informational. Issues that do not impact the contract operation. Usually, informational

severity issues are related to code best practices, e.g. style guide.

Page 16 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

Appendix B. List of examined issue types

Business logic overview

Functionality checks

Following best practices

Access control and authorization

Reentrancy attacks

Front-run attacks

DoS with (unexpected) revert

DoS with block gas limit

Transaction-ordering dependence

ERC/BEP and other standards violation

Unchecked math

Implicit visibility levels

Excessive gas usage

Timestamp dependence

Forcibly sending ether to a contract

Weak sources of randomness

Shadowing state variables

Usage of deprecated code

Page 17 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

Appendix C. Issue status description

 Resolved. The issue has been completely fixed.

 Partially fixed. Parts of the issue have been fixed but the issue is not completely resolved.

 Acknowledged. The team has been notified of the issue, no action has been taken.

 Open. The issue remains unresolved.

Page 18 of 19HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | GoMining

contact@hashex.org

@hashex_manager

blog.hashex.org

linkedin

github

twitter

mailto:contact@hashex.org
https://t.me/hashex_manager
https://blog.hashex.org
https://www.linkedin.com/company/hashex
https://github.com/HashEx
https://twitter.com/hashexofficial

